Search results for "fast direct solver"

showing 3 items of 3 documents

A fast Fourier transform based direct solver for the Helmholtz problem

2018

This article is devoted to the efficient numerical solution of the Helmholtz equation in a two‐ or three‐dimensional (2D or 3D) rectangular domain with an absorbing boundary condition (ABC). The Helmholtz problem is discretized by standard bilinear and trilinear finite elements on an orthogonal mesh yielding a separable system of linear equations. The main key to high performance is to employ the fast Fourier transform (FFT) within a fast direct solver to solve the large separable systems. The computational complexity of the proposed FFT‐based direct solver is O(N log N) operations. Numerical results for both 2D and 3D problems are presented confirming the efficiency of the method discussed…

finite‐element discretizationHelmholtz equationDiscretizationFast Fourier transform010103 numerical & computational mathematicsSystem of linear equationsabsorbing boundary conditions01 natural sciencessymbols.namesake35J05 42A38 65F05 65N22FOS: MathematicsFourier'n sarjatApplied mathematicsBoundary value problemMathematics - Numerical AnalysisHelmholtz equation0101 mathematicsMathematicsosittaisdifferentiaaliyhtälötAlgebra and Number Theorynumeeriset menetelmätApplied MathematicsNumerical Analysis (math.NA)SolverFinite element method010101 applied mathematicsFourier transformsymbolsFourier transformnumeerinen analyysifast direct solver
researchProduct

On solving separable block tridiagonal linear systems using a GPU implementation of radix-4 PSCR method

2018

Partial solution variant of the cyclic reduction (PSCR) method is a direct solver that can be applied to certain types of separable block tridiagonal linear systems. Such linear systems arise, e.g., from the Poisson and the Helmholtz equations discretized with bilinear finite-elements. Furthermore, the separability of the linear system entails that the discretization domain has to be rectangular and the discretization mesh orthogonal. A generalized graphics processing unit (GPU) implementation of the PSCR method is presented. The numerical results indicate up to 24-fold speedups when compared to an equivalent CPU implementation that utilizes a single CPU core. Attained floating point perfor…

Tridiagonal linear systemsProgramvaruteknikComputer Networks and CommunicationsComputer sciencePartial solution techniquereduction010103 numerical & computational mathematicsParallel computingtietotekniikka01 natural scienceslineaariset mallitTheoretical Computer ScienceSeparable spaceinformation technologyArtificial IntelligenceSeparable block tridiagonal linear systemBlock (telecommunications)Fast direct solverRadix0101 mathematicsta113Computer Sciencesta111Linear systemSoftware EngineeringGPU computingSolverComputer Science::Numerical Analysis010101 applied mathematicsPSCR methodDatavetenskap (datalogi)partial solution techniqueHardware and ArchitectureComputer Science::Mathematical Softwarepienennyslinear modelsSoftwareRoofline modelCyclic reductionJournal of Parallel and Distributed Computing
researchProduct

On GPU-accelerated fast direct solvers and their applications in image denoising

2015

block cyclic reductionnäytönohjaimetOpenCLnumeeriset menetelmätprosessoritimage denoisingparallel computingmean curvatureGPU computingkuvankäsittelyimage processingfast Poisson solverseparable block tridiagonal linear systemPSCR methodoptimointialgoritmitohjelmointiaugmented Lagrangian methodkohinafast direct solverrinnakkaislaskentaalternating direction methods of multipliers
researchProduct